Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting
نویسندگان
چکیده
BACKGROUND Amyloidoses are characterized by the extracellular deposition of insoluble fibrillar proteinaceous aggregates highly organized into cross-β structure and referred to as amyloid fibrils. Nowadays, the diagnosis of these diseases remains tedious and involves multiple examinations while an early and accurate protein typing is crucial for the patients' treatment. Routinely used neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) using Pittsburgh compound B, [(11)C]PIB, provide structural information and allow to assess the amyloid burden, respectively, but cannot discriminate between different amyloid deposits. Therefore, the availability of efficient multimodal imaging nanoparticles targeting specific amyloid fibrils would provide a minimally-invasive imaging tool useful for amyloidoses typing and early diagnosis. In the present study, we have functionalized gadolinium-based MRI nanoparticles (AGuIX) with peptides highly specific for Aβ amyloid fibrils, LPFFD and KLVFF. The capacity of such nanoparticles grafted with peptide to discriminate among different amyloid proteins, was tested with Aβ(1-42) fibrils and with mutated-(V30M) transthyretin (TTR) fibrils. RESULTS The results of surface plasmon resonance studies showed that both functionalized nanoparticles interact with Aβ(1-42) fibrils with equilibrium dissociation constant (Kd) values of 403 and 350 µM respectively, whilst they did not interact with V30M-TTR fibrils. Similar experiments, performed with PIB, displayed an interaction both with Aβ(1-42) fibrils and V30M-TTR fibrils, with Kd values of 6 and 10 µM respectively, confirming this agent as a general amyloid fibril marker. Thereafter, the ability of functionalized nanoparticle to target and bind selectively Aβ aggregates was further investigated by immunohistochemistry on AD like-neuropathology brain tissue. Pictures clearly indicated that KLVFF-grafted or LPFFD-grafted to AGuIX nanoparticle recognized and bound the Aβ amyloid plaque localized in the mouse hippocampus. CONCLUSION These results constitute a first step for considering these functionalized nanoparticles as a valuable multimodal imaging tool to selectively discriminate and diagnose amyloidoses.
منابع مشابه
Targeted Magnetic Nanoparticles for Remote Manipulation of Protein Aggregation
Local heat delivered by magnetic nanoparticles (MNPs) selectively attached to their target proteins can be used to manipulate and break up toxic or obstructive aggregates. We applied this magnetic hyperthermia treatment to the amyloid beta (AP) peptide, which unnaturally folds and self-assembles forming amyloid fibrils and insoluble plaques characteristic of amyloidgenic diseases such as Alzhei...
متن کاملDual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice.
Alzheimer's disease (AD) is a common neurodegenerative disorder with few treatments. The limitations imposed by the blood-brain barrier (BBB) and the non-selective distribution of drugs in the brain have hindered the effective treatment of AD and may result in severe side effects on the normal brains. We developed a dual-functional nanoparticle drug delivery system based on a PEGylated poly (la...
متن کاملCan brain impermeable BACE1 inhibitors serve as anti-CAA medicine?
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by the deposition of ß-amyloid peptides (Aß) in and surrounding the wall of microvasculature in the central nervous system, together with parenchymal amyloid plaques collectively referred to as cerebral amyloidosis, which occurs in the brain commonly among the elderly and more frequently in patients with Alzheimer's disease (AD). CAA...
متن کاملGlutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.
Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation throu...
متن کاملPharmacokinetics and amyloid plaque targeting ability of a novel peptide-based magnetic resonance contrast agent in wild-type and Alzheimer's disease transgenic mice.
A novel magnetic resonance (MR) imaging contrast agent based on a derivative of human amyloid beta (Abeta) peptide, Gd[N-4ab/Q-4ab]Abeta 30, was previously shown to cross the blood-brain barrier (BBB) and bind to amyloid plaques in Alzheimer's disease (AD) transgenic mouse (APP/PS1) brain. We now report extensive plasma and brain pharmacokinetics of this contrast agent in wild-type (WT) and in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016